US010650158B2

a2 United States Patent

Capone et al.

US 10,650,158 B2
May 12, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD FOR SECURE FILE
ACCESS OF DERIVATIVE WORKS

Applicant: Secure Circle, LL.C, Los Gatos, CA
us)

Inventors: Jeffrey Capone, Melon Park, CA (US);

Davin Oishi, San Jose, CA (US);

Artsiom Tsai, San Jose, CA (US);

Joshua Jones, Livermore, CA (US);

Ruslan Kazinets, San Jose, CA (US)

SecureCircle, LLC, Santa Clara, CA
us)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 212 days.

Appl. No.: 15/955,234

Filed: Apr. 17, 2018

Prior Publication Data

US 2019/0318107 Al Oct. 17, 2019

Int. CL.

GO6F 21/00 (2013.01)

GO6F 21/62 (2013.01)

GO6F 16/13 (2019.01)

GO6F 16/14 (2019.01)

U.S. CL

CPC ... GO6F 21/6218 (2013.01); GO6F 16/13

(2019.01); GOGF 16/152 (2019.01)
Field of Classification Search
CPC GO6F 21/604; GO6F 21/6218; GO6F 16/13;
GOGF 16/152; GOG6F 2221/2141
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,606,685 B2* 82003 Huxollccccccene. GOG6F 16/10
711/118
8,868,626 B2 10/2014 Iftode et al.
10,404,708 B2* 9/2019 Capone GOG6F 16/176
2006/0161966 Al* 7/2006 Nagampalli GOGF 21/6218
726/1
(Continued)

OTHER PUBLICATIONS

Rutgers University; Novel Architecture for Controlling File System
Access; downloaded from http://discolab.rutgers.edu/filewall/docs/
fwpatent_summary.pdf on Feb. 3, 2015—(3) pages.

(Continued)

Primary Examiner — Beemnet W Dada
(74) Attorney, Agent, or Firm — Boyle Fredrickson, SC

(57) ABSTRACT

An access manager that detects a derivative work and
automatically transfers digital access rights associated with
an original work to the derivative work executes on a
computing device. The access manager detects data to be
written to a storage device and generates a new file signature
for the data. The access manager compares the new file
signature to existing file signatures, where the file signatures
include piecewise signatures. When at least one of the
piecewise signatures from the new file signature matches
one of the piecewise signatures in the existing file signa-
tures, the access manager determines that the new data to be
written to the storage device is a derivative work generated
from the existing file. The access rights associated with the
existing file signature are copied to the new file such that the
file access rights associated with the original work are
passed on to the derivative work.

20 Claims, 7 Drawing Sheets

{f—'-’i 20
APPLICATION
’ *“*”'”' e T
100 J_Access_ L =121 122
\“"‘ OPERATING
SYSTEM
VIRTUAL FILE SYSTEM o124
ACCESS MANAGER __A—126
FILE SYSTEM baos
) o
(1XFER ~131
110 e 144
{ e yoporenied
144 -
- T 152 |
142 T

US 10,650,158 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2006/0259949 Al* 11/2006 Schaefer HO4L 63/0428
726/1

2007/0083570 Al* 4/2007 Fineberg .. . GOG6F 16/1873
2015/0312227 Al* 10/2015 Follis ...cceeoveenne HOA4L 63/0428
713/176

OTHER PUBLICATIONS

Stephen Smaldone, Aniruddha Bohra, and Liviu Iftode; Filewall: A
Firewall for Network File Systems; In Proceedings of the 3rd IEEE
International Symposium on Dependable, Autonomic, and Secure
Computing (DASC’07), Baltimore, MD, Sep. 2007—(10) pages.

* cited by examiner

US 10,650,158 B2

Sheet 1 of 7

May 12, 2020

U.S. Patent

T e T T T T T I T I T T e

ot 1111
Z

A Aaa e WA AR RS A Ae e v VWY Mew G e e e e e e Mer wee ey wes es wee W Vew der sur der wiw e e o den s s G e e e wems e

U.S. Patent May 12, 2020 Sheet 2 of 7 US 10,650,158 B2

i 120
e 102 4" APPLICATION |_/
\..| PROCESSOR F©

T 122

E%‘Q’] |OPERATING | ;
" | SYSTEM |~
| MEMORY
106 L
\..| INTERFACE
' : 130
3}? 112 | INTERFACE Yy
s TP g " I METADATA |
114~ p ,
NV 132
STORAGE L THLE
] .;«w&iﬁ LT loam |
FiG. 2
—~120
| i
APPLICATION
f**‘f**wsfsaﬁw“% VVVVVVVVVV
100 J access 12 12
. OPERATING) |
SYSTEM
VIRTUAL FILE SYSTEM L4124
ACCESS MANAGER " I A—126
FILE SYSTEM L 128
) 9 DATA [131
(lﬁzER L.
110 . 44
\ 144 . =,
o N 152““*
142 A2 L
1404 > 504

U.S. Patent May 12, 2020 Sheet 3 of 7 US 10,650,158 B2

IDENTIFY CALLING PROCESS

190
-~

§L 192

f‘(.f q !
.-""'ff \\\
NO 7 PROCESS . YES

. AUTHORIZED
W\\‘?/M”ﬁ*ﬁ
1]

PASS CALL
THROUGH

1%4
y ACCESS MANAGER

- PROCESSES CALL

186

US 10,650,158 B2

U.S. Patent May 12, 2020 Sheet 4 of 7
203
READ DATA /
T
¥
“" SIGNATURE ™~_ NO |
PRESENT "
FRESENT i
' 209 ¥
206 SJ PASSFILETO
OBTAIN FILE) CALLING PROCESS
ATTRIBUTES
208
ﬂ“’/ﬁ\cc:[ess . NO
AUTHORIZED
~ 1
210 212
EXTRA FILE ./ DENY ACCESS |-~

“‘i' 214
PASS EXTRACTED { ./

FILETO
CALLING PROCESS

U.S. Patent May 12, 2020 Sheet 5 of 7 US 10,650,158 B2

232
READ DATA |/
236
OBTAINFILE | J
ATTRIBUTES
)’\238
Py
" ACCESS NO
“" ‘Aumaﬁazia// -
? .
TYES
235 ! |
N A UPDATEFILE 157 A4 242
RITE DATA A y b
TO FILE | ATTRIBUTES DENY ACCESS
344

INCLUDE SIGNATURE J,
IN CONTAINER

\é‘ 1 246

WRITE DATA J
TO CONTAINER

FlG. 6

U.S. Patent May 12, 2020 Sheet 6 of 7 US 10,650,158 B2
120
},
[APPLICATION -
&{‘A/"’- \\\m
FILE e 121
ACCESS
\\x B “ e ?22
100 S LD
N OPERATING
SYSTEM
- 124
VIRTUAL FILE SYSTEM
- ACCESS MANAGER b 126
FILE SYSTEM e £ 128
< N
DATA L~ 131
XFER
S
152 *\ 154 144 144 144 144
L L } i A
- | 142 g4 T 122 e 12
110 1534 | 1837 G143
d 13T L1482 b 142
F “!f fg 43 s /_f ;‘f(
i,f.’ 140a 140b 150 160
170 FIG. 7
£ £
SIGNATURE ACCESS RIGHTS
; 170
Y | | READ/ WRITE o
[EER o= DURATION
N Gl » USER
Ny i
1 .
RNV
T T .
153 e

FIG. 8

U.S. Patent

May 12, 2020 Sheet 7 of 7 US 10,650,158 B2

260

GENERATE NEW e
FILE SIGNATURE

NEW

NO SIGNATURE

,264

WRITE DATA
TOFILE

JMATCH EXISTING,
SIGNATURE
7 /
|g YES

y 266
ORTAINFILE

ATTRIBUTES

,f-f“;&\ 268
A DERIVATIVE ™
< RE SN
N AUTHORIZED .~
\\, ? *’”/

.

.

YES

270
:“’ .

DENY ACCESS

2
| COPY FILE
ATTRIBUTES

272

WRITE DERIVATIVE | 274

FILETO CONTAINER

UPDATE
PERMISSIONS FILE

276

"DONE }..
G-

FIG. 9

US 10,650,158 B2

1
SYSTEM AND METHOD FOR SECURE FILE
ACCESS OF DERIVATIVE WORKS

BACKGROUND OF THE INVENTION

The subject matter disclosed herein relates generally to a
system for secure file access and, in particular, to a system
to identify and manage access to derivative works generated
from original files across an enterprise whether the files are
accessed internally to or externally from the physical sys-
tems of the enterprise.

Managing access to a company’s electronic data presents
a number of challenges for enterprises such as companies,
university and other educational organizations, hospitals,
local, state, and Federal government agencies and the like.
The rapid expansion of bring-your-own-device (BYOD),
telecommuting, and mobile computing devices, such as
laptops, tablets, and smart phones, have created an environ-
ment in which an ever-increasing number of devices need to
access data and often need to access data from outside an
enterprise’s physical location.

Historically, enterprises have purchased enterprise man-
agement software in an attempt to control access to data
stored on network drives. However, existing enterprise man-
agement software is limited to controlling access to files
only by computing devices connected to the network on
which the enterprise management software is installed. If a
file is copied to another computer, to a local drive, to a
removable storage medium, or emailed to a user outside of
the enterprise, the enterprise management software can no
longer manage access to the file.

Another challenge for enterprise management software is
to protect derivative works. A derivative work is a work that
is based on or derived from an existing work. A sales
presentation may, for example, be a document that is pro-
tected on a network. An initial sales presentation may be
reused for multiple customers. A portion of the information
may be customized to target individual customers; however,
the majority of the information in the presentation may be
reused between presentations. Further, a portion of the
presentation may include confidential information regarding
a company’s future product offerings. The first sales pre-
sentation is considered the original work, and each subse-
quent sales presentation prepared for additional customers is
considered a derivative work. The original work may be
deemed to be confidential and be assigned limited access
rights. It would be desirable that each derivative work
automatically be assigned the same limited access rights.
Absent the detection of a derivative work and automatic
assignment of rights, the creator of the derivative work may
not be aware of the restriction or may forget to assign the
same level of access restriction to a derivative work and the
content of the original work that was to be protected may be
freely available in the derivative work.

Thus, it would be desirable to provide an improved file
access system that can detect a derivative work and auto-
matically transfer digital access rights associated with an
original work to the derivative work.

BRIEF DESCRIPTION OF THE INVENTION

The subject matter disclosed herein describes an
improved file access system that can detect a derivative
work and automatically transfer digital access rights asso-
ciated with an original work to the derivative work. The file
access system includes an access manager executing on a
computing device, where the access manager is operative to

20

25

30

40

45

50

55

2

intercept system commands generated by the operating
system for accessing data on a storage device in communi-
cation with the computing device. The access manager
identifies a system command used to write data to the
storage device and evaluates the data to be written to the
storage device to determine whether the data is a derivative
work. The access manager generates a new file signature for
the data to be written to the storage device. The new file
signature is generated by evaluating segments of the data
and generating a piecewise signature for each segment. The
piecewise signatures are combined to form the new file
signature for the data.

After obtaining a new file signature for the data to be
written to the storage device, the access manager compares
the new file signature to a database containing multiple
existing file signatures to determine whether the new file
signature matches any of the existing file signatures.
Because a derivative work includes original content from an
existing file as well as new content or a modification to the
original content, for example, in length, format, or the like,
the access manager compares the separate piecewise signa-
tures from the new file signature to the piecewise signatures
from the existing files. If at least one of the piecewise
signatures from the new file signature matches one of the
piecewise signatures in the existing file signatures, the two
segments of data used to generate the respective piecewise
signatures match. The access manager determines, therefore,
that the new data to be written to the storage device is a
derivative work generated from the existing file from which
the existing file signature was generated. The access rights
associated with the existing file signature are copied to the
file in which the new data is to be written such that the file
access rights associated with the original work are passed on
to the derivative work.

According to one embodiment of the invention, a system
for managing access to derivative works generated on a
computing device is disclosed. Each derivative work is a
new file including at least a portion of another file. The
system includes a data table and an access manager. The data
table includes multiple first file signatures and multiple sets
of file access rights. Each first file signature includes mul-
tiple piecewise signatures corresponding to data in a known
file, and each set of file access rights corresponds to one of
the first file signatures. The access manager is operative to
receive a write instruction from an operating system on the
computing device and to generate a new file signature
corresponding to data to be written to a storage module in
communication with the computing device in response to the
write instruction, where the new file signature includes
multiple piecewise signatures corresponding to the data to
be written. The access manager is further operative to
compare the new file signature to each of the first file
signatures in the data table and, when at least one piecewise
signature from the new file signature matches one of the
piecewise signatures in one of the first file signatures in the
data table, assign the set of file access rights corresponding
to the matching first file signature to the data to be written.

According to another aspect of the invention, the access
manager may generate a file container in which the data to
be written and the new file signature are stored when the at
least one piecewise signature from the new file signature
matches one of the piecewise signatures in one of the first
file signatures. The access manager may also write the new
file signature and the corresponding set of file access rights
to the data table.

According to still another aspect of the invention, the
access manager may determine when the data table receives

US 10,650,158 B2

3

at least one additional first file signature and a set of file
access rights corresponding to the at least one additional first
file signature, generate a new file signature for at least one
file stored on the storage module when the data table
receives the at least one additional first file signature, and
compare the new file signature for the at least one file stored
on the storage module to each of the additional first file
signatures. The access manager may also assign the set of
file access rights corresponding to the at least one additional
first file signature to the at least one file stored on the storage
module when the corresponding new file signature matches
the at least one additional first file signature.

According to another aspect of the invention, a method for
managing access to derivative works is disclosed. A system
command is intercepted with an access manager executing
on a computing device, and a new file signature is generated
with the access manager in response to the system com-
mand. The system command is issued from an operating
system executing on the computing device, the new file
signature corresponds to data to be written to a storage
module in communication with the computing device, and
the new file signature includes multiple piecewise signatures
generated from the data to be written. A matching file
signature is identified from a data table with the access
manager. The data table includes multiple file signatures and
multiple sets of file access rights. Each file signature in the
data table includes a plurality of piecewise signatures, and
each set of file access rights corresponds to one of the
plurality of file signatures. The matching file signature is
identified when at least one piecewise signature from the
new file signature matches one of the piecewise signatures
in one of the file signatures in the data table. The set of file
access rights corresponding to the matching file signature is
assigned to the new file signature.

According to still another embodiment of the invention, a
system for managing access to derivative works on a storage
module mounted in a computing device is disclosed. The
storage module includes at least one file stored inside a file
container and at least one file stored without a file container.
The system includes a data table stored in the storage
module and an access manager operative on the computing
device. The data table includes multiple first file signatures
and multiple sets of file access rights, where each set of file
access rights corresponds to one of the first file signatures
and each of the first file signatures includes multiple piece-
wise signatures. The access manager is configured to receive
an operating system function call from an operating system
executing on the computing device and to generate a new file
signature corresponding to data to be written to the storage
module in response to the operating system function call,
where the new file signature includes a plurality of piece-
wise signatures corresponding to the data to be written. The
access manager may also compare the new file signature to
each of the plurality of first file signatures in the data table
and generate a new file container when at least one piece-
wise signature from the new file signature matches one of
the piecewise signatures in one of the first file signatures in
the data table. Data to be written to the storage module and
the new file signature is stored in the new file container. The
set of access rights which corresponds to the first file
signature with at least one piecewise signature matching at
least one piecewise signature of the new file signature is
assigned to the new file signature.

According to another aspect of the invention, the com-
puting device may be in communication with a server to
access a data table stored on the server. The access manager
may periodically update either the data table stored in the

10

15

20

25

30

35

40

45

50

55

60

65

4

storage module or the data table stored on the server with
information from the other data table.

These and other objects, advantages, and features of the
invention will become apparent to those skilled in the art
from the detailed description and the accompanying draw-
ings. It should be understood, however, that the detailed
description and accompanying drawings, while indicating
preferred embodiments of the present invention, are given
by way of illustration and not of limitation. Many changes
and modifications may be made within the scope of the
present invention without departing from the spirit thereof,
and the invention includes all such modifications.

BRIEF DESCRIPTION OF THE DRAWING(S)

Various exemplary embodiments of the subject matter
disclosed herein are illustrated in the accompanying draw-
ings in which like reference numerals represent like parts
throughout, and in which:

FIG. 1 is an environmental view of an exemplary enter-
prise incorporating one embodiment of the invention;

FIG. 2 is a block diagram representation of a processing
unit and a storage device from FIG. 1;

FIG. 3 is a block diagram representation of a system
incorporating secure file access according to one embodi-
ment of the present invention;

FIG. 4 is a flowchart illustrating the steps performed by
the access manager to check whether a calling application is
authorized to access a file container;

FIG. 5 is a flowchart illustrating the steps performed by
the access manager when an authorized application issues a
file access request to read a file;

FIG. 6 is a flowchart illustrating the steps performed by
the access manager when an authorized application issues a
file access request to write to an existing file;

FIG. 7 is a block diagram representation of a system
identifying derivative works according to one embodiment
of the present invention;

FIG. 8 is a data table including file signatures and sets of
file access rights according to one embodiment of the
present invention; and

FIG. 9 is a flowchart illustrating the steps performed by
the access manager to identify and protect a derivative file
when an application writes to a new file.

In describing the preferred embodiments of the invention
which are illustrated in the drawings, specific terminology
will be resorted to for the sake of clarity. However, it is not
intended that the invention be limited to the specific terms so
selected and it is understood that each specific term includes
all technical equivalents which operate in a similar manner
to accomplish a similar purpose. For example, the word
“connected,” “attached,” or terms similar thereto are often
used. They are not limited to direct connection but include
connection through other elements where such connection is
recognized as being equivalent by those skilled in the art.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The various features and advantageous details of the
subject matter disclosed herein are explained more fully
with reference to the non-limiting embodiments described in
detail in the following description.

Referring to FIG. 1, an exemplary environment in which
one embodiment of a system for secure file access is
illustrated. An enterprise 10, such as a business or one
location of a business, includes many different connected

US 10,650,158 B2

5

devices. Other examples of enterprises that may form a
suitable environment for embodiments of the invention
include, but are not limited to, university and other educa-
tional organizations, hospitals, local, state, and Federal
government agencies. The system may be configured to
provide secure file access across each of the computing
devices within the enterprise 10. According to the illustrated
embodiment, the enterprise 10 includes a server 12 on which
data is stored. The server 12 may be a single computing
device or multiple computing devices located on-site with or
off-site from the computing devices 20. The multiple com-
puting devices forming the server may include, for example,
multiple, rack mounted devices, desktop devices, or a com-
bination thereof. It is further contemplated that the multiple
computing devices forming the server 12 may be located in
a single location or in multiple locations throughout the
enterprise 10.

A network cable 14 connects the server 12 to a network
device 16. Optionally, the server 12 may be connected to the
network via a wireless connection. The network device 16
may be a router, a switch, a gateway, or any other device
configured to receive and retransmit messages along a
network. The network device 16 may also include an
antenna 18 to provide a wireless connection with one or
more computing devices on the network.

One or more first computing devices 20, such as a desktop
computer, may be connected to the network device 16 via a
network cable 14. Optionally, one of the first computing
devices 20 may be connected to the network via a wireless
connection and may also include an antenna 28 for com-
munication with the antenna 18 on the network device 16.
Each of the first computing devices 20 includes a housing 22
including, for example, a motherboard on which a processor
and memory are mounted. Each of the first computing
devices 20 further includes one or more user interfaces, such
as a keyboard 24, a touch screen, and/or a mouse, and a
display 26. One or more second computing devices 20, such
as a notebook or laptop computer, may also be connected to
the network device 16 via a wired or wireless connection.
According to the illustrated embodiment, a laptop computer
30 includes a user interface 32, such as keyboard, a touch-
pad, or the like, a display 34 and a data port and/or an
antenna 36 to establish a wired and/or a wireless commu-
nication with the network device 16. Still other computing
devices 40 may be configured to be connected to the network
device 16. The other computing devices 40 include tablets,
smart phones, and other Wi-Fi enabled devices that most
typically include an internal antenna for wireless connection
to the network device 16.

The secure file access system may also be configured to
manage access to enterprise files via remote devices. Refer-
ring still to FIG. 1, a first remote computing device 50 may
be connected to the enterprise 10 via the Internet 45. Both
the network device 16 in the enterprise and the remote
computing device 50 may have a wired connection 14, 58 to
the Internet 45. Optionally, either the network device 16 or
the remote computing device 50 may be wirelessly con-
nected to the Internet 45. According to the illustrated
embodiment, the remote computing device 50 includes a
housing 52 including, for example, a motherboard on which
a processor and memory are mounted. The remote comput-
ing device 50 further includes one or more user interfaces,
such as a keyboard 54, a touchpad, and/or mouse, and a
display 56. A second remote computing device 60 may be
unable to connect to the enterprise 10. The second remote
computing device 60 includes a user interface 62, such as
keyboard, touchpad, or the like, and a display 64. A mobile

10

20

25

30

40

45

50

55

60

65

6

data storage device 70, such as a Universal Serial Bus (USB)
drive, memory card, and the like may be used to transfer files
between the server 12 or a computing device 20 in the
enterprise 10 and the second remote computing device 60.

Turning next to FIG. 2, a general block diagram repre-
senting the computing devices 20, 30, 40, 50, 60 of FIG. 1
is illustrated. It is understood that each computing device 20,
30, 40, 50, 60 may have various configurations and addi-
tional components to those illustrated. Further, the block
diagram represents general elements of each computing
device 20, 30, 40, 50, 60, and the general elements may vary
between devices. According to the general block diagram,
each computing device includes a processing component
100 with a processor 102 and memory 104 in communica-
tion with the processor 102. The memory 104 may include
volatile memory, non-volatile memory, or a combination
thereof. Each computing device further includes a physical
data storage module 110. The data storage module 110 may
be, for example, a hard drive, a solid-state drive, a remov-
able memory card, and the like. A processor interface 106
and a storage interface 112 are physical layers in the
processing component 100 and the data storage module 110,
respectively, which establish communication between the
processor 102 and the physical data storage module 110. The
data storage module 110 includes block storage 114 on
which data and files are saved. Each file stored in the data
storage module 110 may include metadata 130 and file data
132. The metadata 130 may include, for example, pointers to
particular blocks 115 in the block storage 114 at which the
file data 132 is stored.

Each computing device 20, 30, 40, 50, and 60 further
includes an operating system 122 to manage the resources of
the computing device and to provide common services
between applications 120 executing on the computing
device. The operating system 122 may be stored on the data
storage module 110, the memory 104 for the processing
component 100, or a combination thereof. The operating
system 122 may vary between computing devices and is
configured to control the hardware components for the
associated computing device. The processor 102 is config-
ured to execute the operating system 122 and each of the
applications 120 stored in the memory 104 or data storage
module 110.

With reference next to FIG. 3, the secure file access
system includes an access manager 126 loaded onto each
computing device for which the system wishes to maintain
secure access to the enterprise files. The access manager 126
may be a device driver, application program interface (API),
or other such routine or protocol configured to be loaded
onto the computing device. The access manager 126 may be
stored in memory 104 for the processing component 100 or
on the data storage module 110. During power-up or during
initialization of the operating system 122, the operating
system detects the presence of the access manager 126 on
the computing device and utilizes the access manager 126
when applications 120 attempt to accesses file data 142. The
data storage module 110 may contain file data 142 that both
requires secure access and is accessible by any program. A
standard data file 140, which is not managed by the access
management system, may include file data 142 and metadata
144. Although shown as a continuous block, it is understood
that the metadata 144 typically is contained in a separate
location according to the operating system 122 in use on the
device, and the file data 142 may be stored in nonconsecu-
tive blocks 115 at multiple locations throughout the storage
module 110. The metadata 144 for the file 140 may contain

US 10,650,158 B2

7

pointers to the locations at which the file data 142 is stored
according to the operating system 122 requirements.

File data 142 that is managed by the access manager 126
is placed in a file container 150. The file container 150
includes the file data 142, the metadata 144, and a signature
152. It is understood that the file container 150 is a graphical
representation of the data and, although shown as a con-
tinuous block, it is understood that the file container 150
may be stored in nonconsecutive blocks 115 at multiple
locations throughout the storage module 110. Similar to the
unmanaged file 140, the metadata 144 for the file container
150 may be contained in a separate location according to
characteristics of the operating system 122 in use on the
device. The signature 152 is stored at a known location with
respect to the file data 142 and may be appended, for
example, to the front or end of the file data 142. The
metadata 144 for the file container 150 may contain pointers
to the locations at which the signature 152 and the file data
142 is stored according to the operating system 122 require-
ments.

The file signature 152 provides a unique identifier for
each file container 150. The signature 152 is a string of data
that represents the file data 142 present in the container 150.
The signature may be generated according to a number of
different techniques and may also be referred to as a hash
code or a fingerprint. The signature 152 is generated by
passing the file data 142 through a routine that outputs the
signature 152 and will output the same signature 152 each
time identical file data 142 is passed to the routine. Similarly,
it is preferred that the routine generate a unique signature for
different file data 142 even when a single bit in the file data
142 changes.

In operation, the access manager 126 interfaces with a file
system 128 for the operating system 122 to manage access
to files 140 and file containers 150 stored on the storage
module 110. An application 120 attempting to access a file
140 or file container 150, referred to herein as a calling
application, is unaware of whether file data 142 being
accessed is stored in an unmanaged standard file 140 or is
part of a managed file container 150. The application 120, or
a process, being executed requests file access 121 via
operating system function calls. The operating system func-
tion calls provide a uniform interface for each application
120 on a particular computing device 20, 30, 40, 50, or 60
to access data available to that device. An exemplary file
access 121 between the application 120 and the operating
system 122 is a read request. The operating system 122
passes the function call to its virtual file system 124. The
virtual file system 124 further allows each application 120 to
issue a uniform read request when, for example, file data 142
may be stored on a network drive, having a first configura-
tion of blocks 115, or a local drive, having a second
configuration of blocks 115. The virtual file system 124
interprets the read request and converts it to the appropriate
file access request for the underlying file system 128. On
computing devices without the access manager 126
installed, the read request from the virtual file system 124
would be passed directly to the file system 128. When the
access manager 126 is installed, the access manager 126
intercepts system commands passed between the virtual file
system 124 and the file system 128. The access manager 126
is thereby able to control access to the requested file data
142.

With primary reference next to FIG. 4 and occasional
reference to FIGS. 1-3, when the access manager 126
intercepts a system command, the access manager 126
performs an initial step of determining whether the calling

10

15

20

25

30

35

40

45

50

55

60

65

8

application is authorized to access the file data 142 within a
file container 150. An authorized application list may be
established in which certain applications 120 are defined as
being authorized to access the contents of a file container
150. For example, a first word processing application may
be authorized to access the contents of a file data 142 and a
second word processing application may be denied access to
the contents of the file data 142. In addition, certain appli-
cations may be permitted to move files 140 without requir-
ing access to the file data 142. For example, a file utility may
perform a file copy or a mail utility may attach a file to an
electronic mail message. It certain embodiments, neither the
file utility nor the mail utility is included on the authorized
application list because there is no need to access the file
contents of the file data 142. However, either application
may still move a file 140 or file container 150 without
accessing the contents of the file. These actions may be
identified by the type of file access request issued by the
application 120 to the operating system 122. If an unauthor-
ized calling process is attempting to copy a file 140 or a file
container 150, the entire contents of the file 140 or file
container 150 will begin to be transferred as block data
without extracting the file data 142 or the signature 152.
Thus, unauthorized calling processes may copy or move the
entire file container 150 without accessing the file data 142
within the container. The signature 152 in the file container
150 is passed intact such that future attempts to access the
file data 142 must have proper authorization. Optionally, the
access manager 126 may be configured to always identify
whether the file to be copied is an unmanaged file 140 or a
file container 150 regardless of the authorization of the
application. As will be discussed in more detail below, the
access manager 126 may check for the presence of a
signature 152 to identify a file container 150 and further
control copying or moving a file container 150 based on a set
of file access rights 154 corresponding to the signature 152.

Other applications may require access to the file data 142.
The file access request is typically performed by a process
(referred to herein as the calling process). At step 190, the
calling process is identified. At step 192, the calling process
is compared to the authorized list of processes that may
access the file data 142 within a file container 150. If the
calling process is not authorized to access the file data 142,
the access manager 126 may pass the file calls through as if
it were not present, as shown in step 194. In other words, the
access manager treats a file 140 and a file container 150 in
the same manner for those calling processes not authorized
to access file data 142 in a file container 150. The metadata
144 in either the file 140 or file container 150 may be
accessed to identify at which blocks 115 within the block
storage 114 the file data 142 and signature 152, if present,
are stored, and the access manager 126 may begin to read the
file 140 or file container 150 from the data storage module
110. Whether an unauthorized calling process was attempt-
ing, for example, to copy a file 140 or a file container 150,
the calling process will be unaware that the access manager
126 intercepted the access request and execution proceeds in
the same manner as if the access manager 126 were not
present. Whether the calling process is attempting to access
a file 140 or file container 150, it will read the file data 142
or file data 142 and signature 152 in the same manner as if
the access manager were not present. If, however, the calling
process is attempting to access a file container, the format of
the data returned will be incorrect due to the insertion of the
signature 152. To the calling process, the file container 150
will appear as a file with an improper format and the calling
process will be unable to access the file data 142.

US 10,650,158 B2

9

In contrast, if the calling process is on the authorized list,
the access manager 126 will manage the function call, as
shown in step 196. FIGS. 5 and 6 illustrate the steps
performed by the access manager 126 when managing a read
function call and a write function call respectively. At step
198, the access manager 126 is done responding to a
function call whether it passes the call through or manages
the call.

With reference also to FIG. 8, a permissions file 170 may
be defined that includes a set of file access rights 154
associated with each file container 150. The permissions file
170 may be stored locally on the computing device 20, 30,
40, 50, or 60; may be stored remotely on the server 12; or,
optionally, a local copy of the permissions file 170 may be
stored on the computing device 20, 30, 40, 50, or 60 and a
master copy of the permissions file 170 may be stored on the
server 12 where the local copy and the master copy of the
permissions file 170 are periodically reconciled to update
changes to one or both of the files. The permissions file 170
may store a set of file access rights 154 for each file
container 150, where each set of file access rights 154 is
associated with the signature 152 from the file container 150.
The set of file access rights 154 may further define additional
limitations on accessing the file data 142 in a file container
150 including, for example, a limited number of reads, user
restrictions, computing device restrictions, and the like. It is
contemplated that the permissions file 170 and the autho-
rized list of processes may either be separate data files or
databases or combined into a single data file or database
without deviating from the scope of the invention.

When the access manager 126 intercepts a system com-
mand to access a file container 150, the access manager 126
may read the signature 152 from the file container 150 and
further read the set of file access rights 154 associated with
the signature 152 to determine whether additional restric-
tions to the file data 142 exist and whether, for example, the
application 120 or a user of the computing device 20, 30, 40,
50, or 60 has authorization to access the file container 150.

With primary reference next to FIG. 5 and occasional
reference to FIGS. 1-3, the steps performed when file data
142 is being accessed for a “read” function are illustrated. As
indicated above, an application 120 may require file access.
The file access request is typically performed by a process
(referred to herein as the calling process). If the calling
process is authorized to access the file data 142, the access
manager 126 moves to step 203 to execute the next steps in
the read request. At step 203, the access manager 126 reads
the data from the data storage module 110. The access
manager 126 utilizes the metadata 144 for the file 140 or file
container 150 to retrieve the file data 142 from the block
storage 114. If the metadata is pointing to a file container
150, the access manager 126 also reads the signature 152
from the block storage 114. The file data 142 and signature
152 may be stored in non-volatile memory 104 on the
processing component 100, such as a system cache, after
being retrieved from the data storage module 110. At step
204, the access manager 126 checks to determine if the
signature 152 is present in the data just retrieved from the
data storage module 110. If no signature 152 is present, the
calling process was requesting a file 140 which is not being
managed by the secure file access system. The access
manager 126 passes the file data 142 back to the calling
process, as shown in step 209, by returning the system call
to the virtual file system 124 indicating that the file data 142
has been read, and the operating system 122 returns the file
data 142 to the calling application. If the file data 142 for the
accessible file 140 is large or the calling application 120

10

15

20

25

30

35

40

45

50

55

60

65

10

needs to make repeated access to the accessible file 140, the
access manager 126 passes system calls between the virtual
file system 124 and the file system 128. According to one
embodiment of the invention, the access manager 126 may
evaluate each system call. According to another embodiment
of the invention, the access manager 126 may identify a
connection between the calling application 120 and the
accessible file 140 and pass system calls without further
evaluation until the connection has been closed.

If, however, at step 204, the access manager 126 deter-
mines that the signature 152 is present, the access manager
126 is aware that the file data 142 to be accessed is managed
by the file access system. The access manager 126 then
retrieves the set of file access rights 154 corresponding to the
signature 152 from the permissions file 170 for the file
container 150, as shown in step 206, to determine whether
the calling application 120 may access the file data 142 in
the file container 150. The permissions file 170 may be
stored either on the local data storage module 110 or on a
data storage module making up, in part, the enterprise server
12.

According to the illustrated embodiment, the file access
rights 154 and corresponding signatures 152 are stored in a
data file. The file access rights 154 and corresponding
signatures 152 may be stored in a database, data file, or in
any other suitable data repository. Creation of the file access
rights 154 will be discussed in more detail below. Based on
the file access rights 154, the access manager 126 determines
whether the read request is authorized, as shown at step 208.
If the read request is not authorized, the access manager 126
denies access to the file data 142, as shown in step 212. After
denying access, the access manager 126 returns a system
level message to the virtual file system 124, which, in turn,
reports to the calling application 120 that access to the file
data 142 was denied. Optionally, denial of access may
include generating a message for display on the computing
device indicating generally that the access was denied or
more specifically identifying why the access was denied.
The message may indicate, for example, that a maximum
number of reads of the file container 150 was exceeded or a
time-limited access duration has expired.

If it is determined in step 208 that the read request is
authorized, the access manager 126 extracts the file data 142
from the file container 150, as shown in step 210. At step
214, the access manager 126 then passes the file data 142
extracted from the file container 150 to the calling applica-
tion 120 via the virtual file system 124. The virtual file
system 124 indicates that the file data 142 has been read, and
the operating system 122 returns the file data 142 to the
calling application 120. If the file data 142 in the file
container 150 is large or the calling application 120 needs to
make repeated access of the file container 150, the access
manager 126 manages the repeated file access requests.
After opening a file container 150, the access manager 126
may repeatedly access the file data 142 without checking the
file access rights 154. Once the access manager 126 closes
the file container 150, the steps illustrated in FIG. 5 must be
repeated. Optionally, the access manager 126 may be con-
figured to evaluate each system call according to the steps
described above. When the file data 142 has either been
retrieved from the data storage module 110 or access has
been denied, the read request is complete, as shown in step
216.

As indicated above, the access manager 126 utilizes a set
of stored file access rights 154 to determine whether access
should be granted to file data 142 within a file container 150.
When a file is created, an initial set of file access rights 154

